If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+26x=16
We move all terms to the left:
x^2+26x-(16)=0
a = 1; b = 26; c = -16;
Δ = b2-4ac
Δ = 262-4·1·(-16)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{185}}{2*1}=\frac{-26-2\sqrt{185}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{185}}{2*1}=\frac{-26+2\sqrt{185}}{2} $
| 0.77+-4u=-14.83 | | 3x+18=0* | | 0.77+–4u=–14.83 | | 2x(7-5x)=21 | | 3=-3(n-4) | | 1+4x+6x=21 | | 5x-54=59 | | 0=-2(x+3)2+11 | | x+77=69 | | m/3+-9.4=-11.9 | | -12=6a-4a | | 7x-33=10x+15 | | -16=-f+-7 | | 4r-8=52 | | 7q-17=53 | | -6-7a-2=-1 | | 4x²-2x+5=0 | | 10x-11x=7x+22 | | 3/5q=4/9 | | 12=k/6+19 | | 0=-4x-3x | | 9x-17=145 | | 2x26=(2x)+(2x) | | 4(3-v)=12-v | | 5/7b=1/6 | | (2n-1)+5=14 | | 24-6n=6(4-n) | | 5m+2-8=24 | | 16x^2+8√2x-6=0 | | 2x-(7-5x)=21 | | 45+x=2x+-2-180 | | 97=-2-9r |